τοτηος

Simultanbohrung ISO-Maschinen

Tipps & Tricks

τοτηος

Inhalt

Ein	leitung	. 3
Bei	spiel Nr. 1	. 3
2.1	Erstellen eines freien Werkzeugs in TISIS	. 3
2.2	Erstellen eines freien Werkzeugs auf der Maschine	. 3
2.3	Festlegen der Z-Geometrie des freien Werkzeugs	. 4
2.4	Programmierung	. 5
Bei	spiel Nr. 2	. 5
3.1	Erstellen von Werkzeugen in TISIS	. 5
3.2	Werkzeuggeometrie	. 6
3.3	Programmierung	. 6
	Ein Bei 2.1 2.2 2.3 2.4 Bei 3.1 3.2 3.3	Einleitung

1 Einleitung

Zahlreiche Tornos-Maschinen können mit einer Flanschmontage für Stirnwerkzeuge in zwei Bearbeitungsrichtungen ausgerüstet werden. Zur Optimierung der Zykluszeiten bietet es sich an, die Bohrung in Hauptbearbeitung und gleichzeitig in Gegenbearbeitung auszuführen.

Anhand der folgenden zwei Bespiele soll veranschaulicht werden, wie dieser Bearbeitungsvorgang mithilfe zweier Bohrwerkzeuge, die sich am stirnseitigen Werkzeugständer befinden, durchgeführt wird.

2 Beispiel Nr. 1

Beim ersten Beispiel wird am stirnseitigen Werkzeugständer in der Gegenbearbeitung ein freies Werkzeug erstellt.

Dies kann sowohl vom TISIS-Werkzeugkatalog als auch von den T-MI-Seiten der Maschine aus geschehen.

Vorteil dieser Methode ist, dass das Werkzeug von Kanal 1 präzise am Spindelmittelpunkt liegt.

2.1 Erstellen eines freien Werkzeugs in TISIS

Im ersten Schritt wird in TISIS ein freies Werkzeug für die Bohrung in der Gegenbearbeitung erstellt.

Es wird T777 D0 benannt; ihm liegt die Z-Geometrie ausgehend vom Nullpunkt der Maschine zur Werkzeugspitze zugrunde.

Für die Bohrung in der Hauptbearbeitung verwenden wir das Standardwerkzeug T350 D0 mit einer Standardgeometrie an dem stirnseitigen Werkzeugständer.

2.2 Erstellen eines freien Werkzeugs auf der Maschine

Es besteht die Möglichkeit, über die T-MI-Seiten ein freies Werkzeug an der Maschine zu erstellen.

Tipps & Tricks

τοτηος

GESTIONNAIRE DES OUTILS	15:40:23
	*** MDI #1
OUTILS OUTILS	08/08
REGLAGES	
OUTILS LIBRES	
1777	
+	
ADV	
HOME	

GESTI	ONNAIRE DES	6 OUTILS					15:40:33
							*** MDI #1
	EDITION D	OUTIL					re l
DUT	NUMERO OU COMMENTAII TYPE D'OU	TIL : TYP	777 E D'OUTIL 1	INCONNU	Ţ		8/08
		OUT	ILS LIBRES				
	GEOM.	x	Y	Z	R	Q	
	≪ D00 +	0.0000	0.0000		0.0000	0	
				_			
	HOME		ADV				

2.3 Festlegen der Z-Geometrie des

freien Werkzeugs

Die Festlegung der Z-Geometrie des Werkzeugs geschieht auf Grundlage des Achsenschemas der Maschine.

Die Geometrien in X und in Y stehen auf 0 (Null), Mittelpunkt des Bohrwerkzeugs.

2.4 Programmierung

Programmierungsbeispiel 1		
Kanal 1	Kanal 2	
M9001	M9001	
G54	G55	
G0 G95 Y0 Z1 T350 D0 G97 M103	G0 G95 Z1 T777 D0 G97 M403 S4000	
S4000 P1	P4	
G0 X0		
M9002	M9002	
G1 Z-12 F0.08 (Bearbeitung)	G1 Z-12 F0.08 (Bearbeitung)	
G0 Z2 (Freifahren des	G0 Z2 (Freifahren des	
Werkzeugs)	Werkzeugs)	
M9003	M9003	

3 Beispiel Nr. 2

Für das zweite Beispiel werden die Standardwerkzeuge des stirnseitigen Werkzeugständers verwendet. Diese werden im Werkzeugkatalog von TISIS bereitgestellt. Vorteil dieser Methode ist, dass das Werkzeug der Gegenbearbeitung präzise am Mittelpunkt der Gegenspindel liegt.

3.1 Erstellen von Werkzeugen in TISIS

Die Geometrie des Werkzeugs in der Hauptbearbeitung entspricht den Standardwerten.

Die Geometrie des Werkzeugs in der Gegenbearbeitung entspricht den Standardwerten.

T450	/	•	₹ ×	
		D0	X: 0 Y: 0 Z: Q: 🖸 0 🔹 R: 0 PERCAGE	

Tipps & Tricks

τοτηος

3.2 Werkzeuggeometrie

Für dieses Beispiel wird die Standardgeometrie der Werkzeuge in der Haupt- sowie Gegenbearbeitung herangezogen.

3.3 Programmierung

Programmierungsbeispiel 2		
Kanal 1	Kanal 2	
M9001	M9001	
G0 X0 Y0 T450 D0 (Positionierung		
des Werkzeugs)		
M9002	M9002	
	G97 M403 S4000 P4	
	G904 A1 T450 D0	
M9003	M9003	
G0 G95 Z1 T350 D0 G97 M103 S4000	G0 G95 Z1	
P1		
M9004	M9004	
G1 Z-12 F0.08 (Bearbeitung)	G1 Z-12 F0.08 (Bearbeitung)	
G0 Z2 (Freifahren des	G0 Z2 (Freifahren des	
Werkzeugs)	Werkzeugs)	
	G904 A0	
M9005	M9005	